Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(2): e1012007, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38386661

RESUMO

Smallpox was the most rampant infectious disease killer of the 20th century, yet much remains unknown about the pathogenesis of the variola virus. Using archived tissue from a study conducted at the Centers for Disease Control and Prevention we characterized pathology in 18 cynomolgus macaques intravenously infected with the Harper strain of variola virus. Six macaques were placebo-treated controls, six were tecovirimat-treated beginning at 2 days post-infection, and six were tecovirimat-treated beginning at 4 days post-infection. All macaques were treated daily until day 17. Archived tissues were interrogated using immunohistochemistry, in situ hybridization, immunofluorescence, and electron microscopy. Gross lesions in three placebo-treated animals that succumbed to infection primarily consisted of cutaneous vesicles, pustules, or crusts with lymphadenopathy. The only gross lesions noted at the conclusion of the study in the three surviving placebo-treated and the Day 4 treated animals consisted of resolving cutaneous pox lesions. No gross lesions attributable to poxviral infection were present in the Day 2 treated macaques. Histologic lesions in three placebo-treated macaques that succumbed to infection consisted of proliferative and necrotizing dermatitis with intracytoplasmic inclusion bodies and lymphoid depletion. The only notable histologic lesion in the Day 4 treated macaques was resolving dermatitis; no notable lesions were seen in the Day 2 treated macaques. Variola virus was detected in all three placebo-treated animals that succumbed to infection prior to the study's conclusion by all utilized methods (IHC, ISH, IFA, EM). None of the three placebo-treated animals that survived to the end of the study nor the animals in the two tecovirimat treatment groups showed evidence of variola virus by these methods. Our findings further characterize variola lesions in the macaque model and describe new molecular methods for variola detection.


Assuntos
Dermatite , Varíola , Vírus da Varíola , Animais , Benzamidas , Isoindóis , Macaca fascicularis , Varíola/tratamento farmacológico , Varíola/patologia , Estados Unidos
2.
Nat Microbiol ; 7(12): 1980-1986, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36253513

RESUMO

Close contact through sexual activity has been associated with the spread of monkeypox virus (MPXV) in the ongoing, global 2022 epidemic. However, it remains unclear whether MPXV replicates in the testes or is transmitted via semen to produce an active infection. We carried out a retrospective analysis of MPXV-infected crab-eating macaque archival tissue samples from acute and convalescent phases of infection of clade I or clade II MPXV using immunostaining and RNA in situ hybridization. We detected MPXV in interstitial cells and seminiferous tubules of testes as well as epididymal lumina, which are the sites of sperm production and maturation. We also detected inflammation and necrosis during the acute phase of the disease by histological analysis. Finally, we found that MPXV was cleared from most organs during convalescence, including healed skin lesions, but could be detected for up to 37 d post-exposure in the testes of convalescent macaques. Our findings highlight the potential for sexual transmission of MPXV in humans.


Assuntos
Vírus da Varíola dos Macacos , Humanos , Animais , Masculino , Testículo/patologia , Estudos Retrospectivos , Modelos Animais de Doenças , Sêmen , Macaca fascicularis , Sobreviventes
3.
Viruses ; 14(9)2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36146799

RESUMO

The 2022 global human monkeypox outbreak emphasizes the importance of maintaining poxvirus research, including enriching a basic understanding of animal models for developing and advancing therapeutics and vaccines. Intravenous administration of monkeypox virus in macaques is arguably one of the best animal models for evaluating the efficacy of medical countermeasures. Here we addressed one criticism of the model, a requirement for a high-titer administration of virus, as well as improving our understanding of monkeypox virus pathogenesis. To do so, we infected macaques with a challenge dose containing a characterized inoculum enriched for the extracellular form of monkeypox virus. Although there were some differences between diseases caused by the enriched preparation compared with a relatively similar unpurified preparation, we were unable to reduce the viral input with the enriched preparation and maintain severe disease. We found that inherent factors contained within the serum of nonhuman primate blood affect the stability of the monkeypox extracellular virions. As a first step to study a role of the extracellular form in transmission, we also showed the presence of this form in the oropharyngeal swabs from nonhuman primates exposed to monkeypox virus.


Assuntos
Vírus da Varíola dos Macacos , Animais , Humanos , Macaca fascicularis , Virulência
4.
Cell ; 185(6): 995-1007.e18, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35303429

RESUMO

Several ebolaviruses cause outbreaks of severe disease. Vaccines and monoclonal antibody cocktails are available to treat Ebola virus (EBOV) infections, but not Sudan virus (SUDV) or other ebolaviruses. Current cocktails contain antibodies that cross-react with the secreted soluble glycoprotein (sGP) that absorbs virus-neutralizing antibodies. By sorting memory B cells from EBOV infection survivors, we isolated two broadly reactive anti-GP monoclonal antibodies, 1C3 and 1C11, that potently neutralize, protect rodents from disease, and lack sGP cross-reactivity. Both antibodies recognize quaternary epitopes in trimeric ebolavirus GP. 1C11 bridges adjacent protomers via the fusion loop. 1C3 has a tripartite epitope in the center of the trimer apex. One 1C3 antigen-binding fragment anchors simultaneously to the three receptor-binding sites in the GP trimer, and separate 1C3 paratope regions interact differently with identical residues on the three protomers. A cocktail of both antibodies completely protected nonhuman primates from EBOV and SUDV infections, indicating their potential clinical value.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Animais , Epitopos , Glicoproteínas/química , Subunidades Proteicas
5.
Front Immunol ; 12: 709772, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484210

RESUMO

Ebola virus remains a significant public health concern due to high morbidity and mortality rates during recurrent outbreaks in endemic areas. Therefore, the development of countermeasures against Ebola virus remains a high priority, and requires the availability of appropriate animal models for efficacy evaluations. The most commonly used nonhuman primate models for efficacy evaluations against Ebola virus utilize the intramuscular or aerosol route of exposure. Although clinical disease signs are similar to human cases, disease progression in these models is much more rapid, and this can pose significant hurdles for countermeasure evaluations. The objective of the present study was to evaluate the Ebola virus disease course that arises after cynomolgus macaques are exposed to Ebola virus by a mucosal route (the intranasal route). Two different doses (10 pfu and 100 pfu) and delivery methodologies (drop-wise and mucosal atomization device) were evaluated on this study. Differences in clinical disease between dose and delivery groups were not noted. However, a delayed disease course was identified for approximately half of the animals on study, and this delayed disease was dose and administration method independent. Therefore, it appears that mucosal exposure with Ebola virus results in a disease course in cynomolgus macaques that more accurately replicates that which is documented for human cases. In summary, the data presented support the need for further development of this model as a possible alternative to parenteral and small-particle aerosol models for the study of human Ebola virus disease and for countermeasure evaluations.


Assuntos
Modelos Animais de Doenças , Doença pelo Vírus Ebola/etiologia , Administração Intranasal , Amilases/metabolismo , Animais , Progressão da Doença , Feminino , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/virologia , Macaca fascicularis , Masculino , RNA Viral/sangue
6.
PLoS One ; 16(7): e0252874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34214118

RESUMO

Filoviruses (Family Filoviridae genera Ebolavirus and Marburgvirus) are negative-stranded RNA viruses that cause severe health effects in humans and non-human primates, including death. Except in outbreak settings, vaccines and other medical countermeasures against Ebola virus (EBOV) will require testing under the FDA Animal Rule. Multiple vaccine candidates have been evaluated using cynomolgus monkeys (CM) exposed to EBOV Kikwit strain. To the best of our knowledge, however, animal model development data supporting the use of CM in vaccine research have not been submitted to the FDA. This study describes a large CM database (122 CM, 62 female and 60 male, age 2 to 9 years) and demonstrates the consistency of the CM model through time to death models and descriptive statistics. CMs were exposed to EBOV doses of 0.1 to 100,000 PFU in 33 studies conducted at three Animal Biosafety Level 4 facilities, by three exposure routes. Time to death was modeled using Cox proportional hazards models with a frailty term that incorporated study-to-study variability. Despite significant differences attributed to exposure variables, all CMs exposed to the 100 to 1,000 pfu doses commonly used in vaccine studies died or met euthanasia criteria within 21 days of exposure, median 7 days, 93% between 5 and 12 days of exposure. Moderate clinical signs were observed 4 to 5 days after exposure and preceded death or euthanasia by approximately one day. Viremia was detected within a few days of infection. Hematology indices were indicative of viremia and the propensity for hemorrhage with progression of Ebola viremia. Changes associated with coagulation parameters and platelets were consistent with coagulation disruption. Changes in leukocyte profiles were indicative of an acute inflammatory response. Increased liver enzymes were observed shortly after exposure. Taken together, these factors suggest that the cynomolgus monkey is a reliable animal model for human disease.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola , Animais , Modelos Animais de Doenças , Surtos de Doenças , Feminino , Macaca fascicularis , Masculino , Reprodutibilidade dos Testes , Carga Viral
7.
Sci Rep ; 10(1): 4003, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132561

RESUMO

Two proton pump inhibitors, tenatoprazole and esomeprazole, were previously shown to inhibit HIV-1 egress by blocking the interaction between Tsg101, a member of the ESCRT-I complex, and ubiquitin. Here, we deepen our understanding of prazole budding inhibition by studying a range of viruses in the presence of tenatoprazole. Furthermore, we investigate the relationship between the chemistry of prodrug activation and HIV-1 inhibition for diverse prazoles currently on the market. We report that tenatoprazole is capable of inhibiting the replication of members of the enveloped filo, alpha, and herpes virus families but not the flavivirus group and not the non-enveloped poliovirus. Another key finding is that prazole prodrugs must be activated inside the cell, while their rate of activation in vitro correlated to their efficacy in cells. Our study lays the groundwork for future efforts to repurpose prazole-based compounds as antivirals that are both broad-spectrum and selective in nature.


Assuntos
2-Piridinilmetilsulfinilbenzimidazóis/farmacologia , HIV-1/fisiologia , Inibidores da Bomba de Prótons/farmacologia , Replicação Viral/efeitos dos fármacos , Células HeLa , Humanos
8.
Proc Natl Acad Sci U S A ; 116(40): 20054-20062, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31484758

RESUMO

Ebola virus (EBOV) continues to pose significant threats to global public health, requiring ongoing development of multiple strategies for disease control. To date, numerous monoclonal antibodies (mAbs) that target the EBOV glycoprotein (GP) have demonstrated potent protective activity in animal disease models and are thus promising candidates for the control of EBOV. However, recent work in a variety of virus diseases has highlighted the importance of coupling Fab neutralization with Fc effector activity for effective antibody-mediated protection. To determine the contribution of Fc effector activity to the protective function of mAbs to EBOV GP, we selected anti-GP mAbs targeting representative, protective epitopes and characterized their Fc receptor (FcγR) dependence in vivo in FcγR humanized mouse challenge models of EBOV disease. In contrast to previous studies, we find that anti-GP mAbs exhibited differential requirements for FcγR engagement in mediating their protective activity independent of their distance from the viral membrane. Anti-GP mAbs targeting membrane proximal epitopes or the GP mucin domain do not rely on Fc-FcγR interactions to confer activity, whereas antibodies against the GP chalice bowl and the fusion loop require FcγR engagement for optimal in vivo antiviral activity. This complexity of antibody-mediated protection from EBOV disease highlights the structural constraints of FcγR binding for specific viral epitopes and has important implications for the development of mAb-based immunotherapeutics with optimal potency and efficacy.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Receptores de IgG/metabolismo , Animais , Afinidade de Anticorpos , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Doença pelo Vírus Ebola/virologia , Humanos , Imunoglobulina G/imunologia , Camundongos , Mucinas/antagonistas & inibidores , Mucinas/imunologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores de IgG/química
9.
Cell ; 177(6): 1566-1582.e17, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31104840

RESUMO

Ebola virus (EBOV) remains a public health threat. We performed a longitudinal study of B cell responses to EBOV in four survivors of the 2014 West African outbreak. Infection induced lasting EBOV-specific immunoglobulin G (IgG) antibodies, but their subclass composition changed over time, with IgG1 persisting, IgG3 rapidly declining, and IgG4 appearing late. Striking changes occurred in the immunoglobulin repertoire, with massive recruitment of naive B cells that subsequently underwent hypermutation. We characterized a large panel of EBOV glycoprotein-specific monoclonal antibodies (mAbs). Only a small subset of mAbs that bound glycoprotein by ELISA recognized cell-surface glycoprotein. However, this subset contained all neutralizing mAbs. Several mAbs protected against EBOV disease in animals, including one mAb that targeted an epitope under evolutionary selection during the 2014 outbreak. Convergent antibody evolution was seen across multiple donors, particularly among VH3-13 neutralizing antibodies specific for the GP1 core. Our study provides a benchmark for assessing EBOV vaccine-induced immunity.


Assuntos
Anticorpos Monoclonais/imunologia , Linfócitos B/fisiologia , Doença pelo Vírus Ebola/imunologia , Adulto , Sequência de Aminoácidos/genética , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/metabolismo , Chlorocebus aethiops , Vacinas contra Ebola/imunologia , Ebolavirus/genética , Ebolavirus/metabolismo , Ebolavirus/patogenicidade , Epitopos/sangue , Feminino , Glicoproteínas/genética , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Imunoglobulina G/imunologia , Células Jurkat , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Sobreviventes , Células Vero , Proteínas do Envelope Viral/genética
10.
Viruses ; 10(11)2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469360

RESUMO

Angola variant (MARV/Ang) has replaced Mt. Elgon variant Musoke isolate (MARV/MtE-Mus) as the consensus standard variant for Marburg virus research and is regarded as causing a more aggressive phenotype of disease in animal models; however, there is a dearth of published evidence supporting the higher virulence of MARV/Ang. In this retrospective study, we used data pooled from eight separate studies in nonhuman primates experimentally exposed with either 1000 pfu intramuscular (IM) MARV/Ang or MARV/MtE-Mus between 2012 and 2017 at the United States Army Medical Research Institute of Infectious Diseases (USAMRIID). Multivariable Cox proportional hazards regression was used to evaluate the association of variant type with time to death, the development of anorexia, rash, viremia, and 10 select clinical laboratory values. A total of 47 cynomolgus monkeys were included, of which 18 were exposed to MARV/Ang in three separate studies and 29 to MARV/MtE-Mus in five studies. Following universally fatal Marburg virus exposure, compared to MARV/MtE-Mus, MARV/Ang was associated with an increased risk of death (HR = 22.10; 95% CI: 7.08, 68.93), rash (HR = 5.87; 95% CI: 2.76, 12.51) and loss of appetite (HR = 35.10; 95% CI: 7.60, 162.18). Our data demonstrate an increased virulence of MARV/Ang compared to MARV/MtE-Mus variant in the 1000 pfu IM cynomolgus macaque model.


Assuntos
Macaca , Doença do Vírus de Marburg/patologia , Marburgvirus/patogenicidade , Animais , Modelos Animais de Doenças , Injeções Intramusculares , Estudos Retrospectivos , Análise de Sobrevida , Estados Unidos , Virulência
11.
Sci Rep ; 8(1): 6480, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691416

RESUMO

Ebola virus (EBOV) is a negative-strand RNA virus that replicates in the cytoplasm and causes an often-fatal hemorrhagic fever. EBOV, like other viruses, can reportedly encode its own microRNAs (miRNAs) to subvert host immune defenses. miRNAs are short noncoding RNAs that can regulate gene expression by hybridizing to multiple mRNAs, and viral miRNAs can enhance viral replication and infectivity by regulating host or viral genes. To date, only one EBOV miRNA has been examined in human infection. Here, we assayed mouse, rhesus macaque, cynomolgus macaque, and human samples infected with three EBOV variants for twelve computationally predicted viral miRNAs using RT-qPCR. Ten miRNAs aligned to EBOV variants and were detectable in the four species during disease with several viral miRNAs showing presymptomatic amplification in animal models. miRNA abundances in both the mouse and nonhuman primate models mirrored the human cohort, with miR-1-5p, miR-1-3p, and miR-T3-3p consistently at the highest levels. These striking similarities in the most abundant miRNAs during infection with different EBOV variants and hosts indicate that these miRNAs are potential valuable diagnostic markers and key effectors of EBOV pathogenesis.


Assuntos
Ebolavirus/genética , Doença pelo Vírus Ebola/genética , MicroRNAs/genética , Animais , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Doença pelo Vírus Ebola/virologia , Humanos , Macaca fascicularis/genética , Macaca mulatta/genética , Camundongos , RNA Mensageiro/metabolismo , Replicação Viral/genética
12.
Sci Transl Med ; 10(434)2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593102

RESUMO

Ebola virus disease (EVD), caused by Ebola virus (EBOV), is a severe illness characterized by case fatality rates of up to 90%. The sporadic nature of outbreaks in resource-limited areas has hindered the ability to characterize the pathogenesis of EVD at all stages of infection but particularly early host responses. Pathogenesis is often studied in nonhuman primate (NHP) models of disease that replicate major aspects of human EVD. Typically, NHP models use a large infectious dose, are carried out through intramuscular or aerosol exposure, and have a fairly uniform disease course. By contrast, we report our analysis of the host response to EBOV after intranasal exposure. Twelve cynomolgus macaques were infected with 100 plaque-forming units of EBOV/Makona through intranasal exposure and presented with varying times to onset of EVD. We used RNA sequencing and a newly developed NanoString CodeSet to monitor the host response via changes in RNA transcripts over time. When individual animal gene expression data were phased based on the onset of sustained fever, the first clinical sign of severe disease, mathematical models indicated that interferon-stimulated genes appeared as early as 4 days before fever onset. This demonstrates that lethal EVD has a uniform and predictable response to infection regardless of time to onset. Furthermore, expression of a subset of genes could predict disease development before other host-based indications of infection such as fever.


Assuntos
Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/virologia , Administração Intranasal , Animais , Modelos Animais de Doenças , Doença pelo Vírus Ebola/imunologia , Macaca fascicularis/virologia
13.
Sci Rep ; 7(1): 14756, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116224

RESUMO

Ebola virus disease (EVD) is a serious illness with mortality rates of 20-90% in various outbreaks. EVD is characterized by robust virus replication and strong host inflammatory response. Analyzing host immune responses has increasingly involved multimodal approaches including transcriptomics to profile gene expression. We studied cynomolgus macaques exposed to Ebola virus Makona via different routes with the intent of comparing RNA-Seq to a NanoString nCounter codeset targeting 769 non-human primate (NHP) genes. RNA-Seq analysis of serial blood samples showed different routes led to the same overall transcriptional response seen in previously reported EBOV-exposed NHP studies. Both platforms displayed a strong correlation in gene expression patterns, including a strong induction of innate immune response genes at early times post-exposure, and neutrophil-associated genes at later time points. A 41-gene classifier was tested in both platforms for ability to cluster samples by infection status. Both NanoString and RNA-Seq could be used to predict relative abundances of circulating immune cell populations that matched traditional hematology. This demonstrates the complementarity of RNA-Seq and NanoString. Moreover, the development of an NHP-specific NanoString codeset should augment studies of filoviruses and other high containment infectious diseases without the infrastructure requirements of RNA-Seq technology.


Assuntos
Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/genética , Transcriptoma , Animais , Modelos Animais de Doenças , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/imunologia , Humanos , Imunidade Inata , Imunidade nas Mucosas , Macaca fascicularis , Análise de Sequência de RNA , Transdução de Sinais , Virulência
14.
Mol Ther Methods Clin Dev ; 7: 74-82, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29034261

RESUMO

Monoclonal antibodies (mAbs) have wide clinical utility, but global access is limited by high costs and impracticalities associated with repeated passive administration. Here, we describe an optimized electroporation-based DNA gene transfer platform technology that can be utilized for production of functional mAbs in vivo, with the potential to reduce costs and administration burdens. We demonstrate that multiple mAbs can be simultaneously expressed at protective concentrations for a protracted period of time using DNA doses and electroporation conditions that are feasible clinically. The expressed mAbs could also protect mice against lethal influenza or Ebola virus challenges. Our findings suggest that this DNA gene transfer platform technology could be a game-changing advance that expands access to effective mAb therapeutics globally.

15.
Viruses ; 8(4): 87, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27043611

RESUMO

Marburg virus causes severe and often lethal viral disease in humans, and there are currently no Food and Drug Administration (FDA) approved medical countermeasures. The sporadic occurrence of Marburg outbreaks does not allow for evaluation of countermeasures in humans, so therapeutic and vaccine candidates can only be approved through the FDA animal rule-a mechanism requiring well-characterized animal models in which efficacy would be evaluated. Here, we describe a natural history study where rhesus macaques were surgically implanted with telemetry devices and central venous catheters prior to aerosol exposure with Marburg-Angola virus, enabling continuous physiologic monitoring and blood sampling without anesthesia. After a three to four day incubation period, all animals developed fever, viremia, and lymphopenia before developing tachycardia, tachypnea, elevated liver enzymes, decreased liver function, azotemia, elevated D-dimer levels and elevated pro-inflammatory cytokines suggesting a systemic inflammatory response with organ failure. The final, terminal period began with the onset of sustained hypotension, dehydration progressed with signs of major organ hypoperfusion (hyperlactatemia, acute kidney injury, hypothermia), and ended with euthanasia or death. The most significant pathologic findings were marked infection of the respiratory lymphoid tissue with destruction of the tracheobronchial and mediastinal lymph nodes, and severe diffuse infection in the liver, and splenitis.


Assuntos
Macaca mulatta/virologia , Doença do Vírus de Marburg/transmissão , Doença do Vírus de Marburg/virologia , Marburgvirus/fisiologia , Animais , Contagem de Células Sanguíneas , Testes de Coagulação Sanguínea , Citocinas/sangue , Feminino , Testes de Função Renal , Testes de Função Hepática , Masculino , Doença do Vírus de Marburg/diagnóstico , Viremia
16.
Viruses ; 7(10): 5489-507, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26512687

RESUMO

Ebola- and marburgviruses are highly pathogenic filoviruses and causative agents of viral hemorrhagic fever. Filovirus disease is characterized by a dysregulated immune response, severe organ damage, and coagulation abnormalities. This includes modulation of cytokines, signaling mediators that regulate various components of the immune system as well as other biological processes. Here we examine the role of cytokines in filovirus infection, with an emphasis on understanding how these molecules affect development of the antiviral immune response and influence pathology. These proteins may present targets for immune modulation by therapeutic agents and vaccines in an effort to boost the natural immune response to infection and/or reduce immunopathology.


Assuntos
Citocinas/imunologia , Infecções por Filoviridae/imunologia , Infecções por Filoviridae/patologia , Filoviridae/imunologia , Animais , Humanos
17.
PLoS One ; 10(9): e0138843, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413900

RESUMO

Marburg virus infection in humans causes a hemorrhagic disease with a high case fatality rate. Countermeasure development requires the use of well-characterized animal models that mimic human disease. To further characterize the cynomolgus macaque model of MARV/Angola, two independent dose response studies were performed using the intramuscular or aerosol routes of exposure. All animals succumbed at the lowest target dose; therefore, a dose effect could not be determined. For intramuscular-exposed animals, 100 PFU was the first target dose that was not significantly different than higher target doses in terms of time to disposition, clinical pathology, and histopathology. Although a significant difference was not observed between aerosol-exposed animals in the 10 PFU and 100 PFU target dose groups, 100 PFU was determined to be the lowest target dose that could be consistently obtained and accurately titrated in aerosol studies.


Assuntos
Aerossóis/administração & dosagem , Doença do Vírus de Marburg/virologia , Marburgvirus/fisiologia , Animais , Injeções Intramusculares , Estimativa de Kaplan-Meier , Macaca fascicularis , Doença do Vírus de Marburg/sangue , RNA Viral/sangue , Temperatura
18.
J Virol ; 89(19): 9875-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26202230

RESUMO

UNLABELLED: Marburg virus (MARV) infection is a lethal hemorrhagic fever for which no licensed vaccines or therapeutics are available. Development of appropriate medical countermeasures requires a thorough understanding of the interaction between the host and the pathogen and the resulting disease course. In this study, 15 rhesus macaques were sequentially sacrificed following aerosol exposure to the MARV variant Angola, with longitudinal changes in physiology, immunology, and histopathology used to assess disease progression. Immunohistochemical evidence of infection and resulting histopathological changes were identified as early as day 3 postexposure (p.e.). The appearance of fever in infected animals coincided with the detection of serum viremia and plasma viral genomes on day 4 p.e. High (>10(7) PFU/ml) viral loads were detected in all major organs (lung, liver, spleen, kidney, brain, etc.) beginning day 6 p.e. Clinical pathology findings included coagulopathy, leukocytosis, and profound liver destruction as indicated by elevated liver transaminases, azotemia, and hypoalbuminemia. Altered cytokine expression in response to infection included early increases in Th2 cytokines such as interleukin 10 (IL-10) and IL-5 and late-stage increases in Th1 cytokines such as IL-2, IL-15, and granulocyte-macrophage colony-stimulating factor (GM-CSF). This study provides a longitudinal examination of clinical disease of aerosol MARV Angola infection in the rhesus macaque model. IMPORTANCE: In this study, we carefully analyzed the timeline of Marburg virus infection in nonhuman primates in order to provide a well-characterized model of disease progression following aerosol exposure.


Assuntos
Citocinas/sangue , Interações Hospedeiro-Patógeno , Doença do Vírus de Marburg/fisiopatologia , Marburgvirus/patogenicidade , Aerossóis , Animais , Progressão da Doença , Imuno-Histoquímica , Estudos Longitudinais , Macaca mulatta , Doença do Vírus de Marburg/sangue , Fatores de Tempo , Carga Viral
19.
J Virol ; 89(19): 9865-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26202234

RESUMO

UNLABELLED: Marburg virus is a genetically simple RNA virus that causes a severe hemorrhagic fever in humans and nonhuman primates. The mechanism of pathogenesis of the infection is not well understood, but it is well accepted that pathogenesis is appreciably driven by a hyperactive immune response. To better understand the overall response to Marburg virus challenge, we undertook a transcriptomic analysis of immune cells circulating in the blood following aerosol exposure of rhesus macaques to a lethal dose of Marburg virus. Using two-color microarrays, we analyzed the transcriptomes of peripheral blood mononuclear cells that were collected throughout the course of infection from 1 to 9 days postexposure, representing the full course of the infection. The response followed a 3-stage induction (early infection, 1 to 3 days postexposure; midinfection, 5 days postexposure; late infection, 7 to 9 days postexposure) that was led by a robust innate immune response. The host response to aerosolized Marburg virus was evident at 1 day postexposure. Analysis of cytokine transcripts that were overexpressed during infection indicated that previously unanalyzed cytokines are likely induced in response to exposure to Marburg virus and further suggested that the early immune response is skewed toward a Th2 response that would hamper the development of an effective antiviral immune response early in disease. Late infection events included the upregulation of coagulation-associated factors. These findings demonstrate very early host responses to Marburg virus infection and provide a rich data set for identification of factors expressed throughout the course of infection that can be investigated as markers of infection and targets for therapy. IMPORTANCE: Marburg virus causes a severe infection that is associated with high mortality and hemorrhage. The disease is associated with an immune response that contributes to the lethality of the disease. In this study, we investigated how the immune cells circulating in the blood of infected primates respond following exposure to Marburg virus. Our results show that there are three discernible stages of response to infection that correlate with presymptomatic, early, and late symptomatic stages of infection, a response format similar to that seen following challenge with other hemorrhagic fever viruses. In contrast to the ability of the virus to block innate immune signaling in vitro, the earliest and most sustained response is an interferon-like response. Our analysis also identifies a number of cytokines that are transcriptionally upregulated during late stages of infection and suggest that there is a Th2-skewed response to infection. When correlated with companion data describing the animal model from which our samples were collected, our results suggest that the innate immune response may contribute to overall pathogenesis.


Assuntos
Biomarcadores/metabolismo , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Doença do Vírus de Marburg/imunologia , Doença do Vírus de Marburg/fisiopatologia , Marburgvirus/imunologia , Animais , Citocinas/imunologia , Perfilação da Expressão Gênica , Leucócitos Mononucleares/metabolismo , Macaca mulatta , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real
20.
BMC Genomics ; 15: 960, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25377889

RESUMO

BACKGROUND: Lassa virus and Marburg virus are two causative agents of viral hemorrhagic fever. Their diagnosis is difficult because patients infected with either pathogen present similar nonspecific symptoms early after infection. Current diagnostic tests are based on detecting viral proteins or nucleic acids in the blood, but these cannot be found during the early stages of disease, before the virus starts replicating in the blood. Using the transcriptional response of the host during infection can lead to earlier diagnoses compared to those of traditional methods. RESULTS: In this study, we use RNA sequencing to obtain a high-resolution view of the in vivo transcriptional dynamics of peripheral blood mononuclear cells (PBMCs) throughout both types of infection. We report a subset of host mRNAs, including heat-shock proteins like HSPA1B, immunoglobulins like IGJ, and cell adhesion molecules like SIGLEC1, whose differences in expression are strong enough to distinguish Lassa infection from Marburg infection in non-human primates. We have validated these infection-specific expression differences by using microarrays on a larger set of samples, and by quantifying the expression of individual genes using RT-PCR. CONCLUSIONS: These results suggest that host transcriptional signatures are correlated with specific viral infections, and that they can be used to identify highly pathogenic viruses during the early stages of disease, before standard detection methods become effective.


Assuntos
Febres Hemorrágicas Virais/veterinária , Interações Hospedeiro-Patógeno/genética , Vírus Lassa , Marburgvirus , Doenças dos Macacos/genética , Transcrição Gênica , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Interferon Tipo I/farmacologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Macaca fascicularis , Masculino , Doenças dos Macacos/diagnóstico , Doenças dos Macacos/virologia , Reprodutibilidade dos Testes , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...